
The Pragmatic Scientist
Arjun Krishnan, Associate Professor of Biomedical Informatics, CUAnschutz

Email |Website | Social

The Pragmatic Programmer [Copyright 2000, AddisonWesley] is a great book and a reliable

reference on software engineering that I findmyself going back to regularly. The authors, Hunt &

Thomas, conclude the bookwith a List of Tips that summarizes its key ideas.

During a recent trip to the book, I realized that many of the tips in this list have general

counterparts that go beyond software development in being valuable lessons for doing science, in

general, and computational science, in particular.

So, I have picked, adapted, and generalized those practical tips here (below). I hope for this to be

useful to graduate students, postdocs, & other scientists in training.

You and your science
1. Care About Your Craft: Why spend your life doing your project(s) unless you care about doing

it well?

2. Think! About YourWork: Turn off the autopilot and take control. Constantly critique and

appraise your work.

3. Remember the Big Picture: Don't get so engrossed in the details that you forget to check

what's the goals and impact of your whole project/endeavor.

You and your learning
1. Invest Regularly in Your Knowledge Portfolio: Make learning a habit.

2. Critically AnalyzeWhat You Read andHear: Don't be swayed by high-profile papers, media

hype, or current dogma. Analyze information in terms of you and your project.

3. Don't Repeat Yourself: Every piece of knowledgemust have a single, unambiguous,

authoritative representation within a system.

4. Create and Use a Project Glossary: Create andmaintain a single source of all the specific

terms and vocabulary for a project.

You and your (computational) scientific practice
1. Explore & Prototype to Fail Fast and Learn: Exploration-and-prototyping is a learning

experience. Its value lies not in the code/plots you produce, but in the lessons you learn.

mailto:arjun.krishnan@cuanschutz.edu
https://www.thekrishnanlab.org
https://www.twitter.com/@compbiologist
https://pragprog.com/tips/

2. Don't Just Think It – Prove It: Don't wring your hand and speculate.Work a small example that

reveals, confirms, or eliminates something.

3. Estimate to Avoid Surprises: Plan and estimate before you start. You'll spot potential

problems up front. Update your plan frequently as you go.

4. ProvideOptions, Don'tMake Excuses: Instead of excuses, provide options. Don't say it can't

be done; explain what can be done.

5. Fix the Problem, Not the Blame: It doesn't really matter whether themistake is your fault or

someone else's. It's still your problem, and it still needs fixing.

6. Design to be Continuously Functional and Testable: Write code that is tractable and testable

every step along the way instead of once at the end.

7. Eliminate Effects BetweenUnrelated Things: Design code and analysis that are

self-contained, independent, and have a single, well-defined purpose.

8. Don't Livewith BrokenWindows: Fix bad designs, wrong decisions, and poor codewhen you

see them.

9. Don't UseWizard Code YouDon't Understand: Wizards can generate reams of code.Make

sure you understand all of it before you incorporate it into your project.

10. Don't ThinkOutside the Box – Find the Box: When facedwith an impossible problem, identify

the real constraints. Ask yourself: "Does it have to be done this way? Does it have to be done at

all?"

11. Don't Be Bound to FormalMethods: Don't uncritically adopt any techniquewithout putting it

into the context of your project and your capabilities.

You and your community
1. Be a Catalyst for Change: Share new ideas, concepts, and software with your peers &

colleagues, and help in lifting-up the folks around you and create a vibrant, supportive

community.

2. It's BothWhat You Say and theWay You Say It: There's no point in having great ideas if you
don't communicate them effectively.What you say also needs to invite folks in, excite &

educate them, and help build trust.

3. Make It Easy to Reuse: If your approaches, methods, and code are easy to reuse, people will,

both within and beyond the lab.

